Appendix X to:

A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first

 Consequences for Long-distance Physics.Referred equations: (34a), (35), (36), (37), (B.19), (B.20)

Space transformations for force-free moving systems.

A coordinate transformation is handled for a force-free moving system, for which the time transformation was proven to be:
(35) $\mathrm{T}^{*}\left(\mathrm{~T}_{\text {or }}, \mathrm{d}_{\infty} ; \mathrm{x}, \mathrm{y}, \mathrm{T}\right)=\Theta_{\text {or }}\left(\gamma^{2}-\mathrm{xd}_{\infty}\right) \mathrm{T}-\Delta \mathrm{t}_{\text {or }}$
and considering the vectors \vec{s} and \vec{r}, photon direction μ and transformation functions $X()$ and $Y()$ in polar coordinates as in Appendix B. The above time transformation is inserted into equation (B.19) where $x=s \cos (\sigma)$:

$$
\begin{equation*}
\mathrm{Y}\left(\mathrm{~s}, \sigma, \mathrm{~T}_{\mathrm{s}}\right)=\mathrm{C}_{\mathrm{d}} \mathrm{~s} \sin (\sigma) \frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{~T}_{\mathrm{s}}^{*}}=\frac{\mathrm{C}_{\mathrm{d}} \mathrm{~s} \sin (\sigma) \mathrm{T}_{\mathrm{s}}}{\Theta_{\text {or }}\left\{\gamma^{2}-\mathrm{s} \mathrm{~d}_{\infty} \cos (\sigma)\right\} \mathrm{T}_{\mathrm{s}}-\Delta \mathrm{t}_{\text {or }}} \tag{X.1}
\end{equation*}
$$

At this point, we can repeat the treatment of the non-moving case; in the limit for $\mathrm{T}_{\mathrm{s}} \rightarrow \infty, \mathrm{s} \rightarrow \gamma, \sigma \rightarrow \mu$ the above equation becomes:

$$
\begin{equation*}
\mathrm{Y}(\gamma, \mu, \infty)=\frac{\mathrm{C}_{\mathrm{d}} \sin (\mu)}{\Theta_{\text {or }}\left\{\gamma-\mathrm{d}_{\infty} \cos (\mu)\right\}} \tag{X.2}
\end{equation*}
$$

and that value will have a maximum of γ reached for a μ_{0} for which $\mathrm{dY} / \mathrm{d} \mu=0$
(X.3)

$$
\begin{equation*}
0=\frac{\cos \left(\mu_{0}\right)}{\gamma-\mathrm{d}_{\infty} \cos \left(\mu_{0}\right)}-\frac{\mathrm{d}_{\infty} \sin \left(\mu_{0}\right)^{2}}{\left\{\gamma-\mathrm{d}_{\infty} \cos \left(\mu_{0}\right)\right\}^{2}} \tag{X.3}
\end{equation*}
$$

where the constants $C_{d}, \Theta_{\text {or }}$ have been left out; the solution for μ_{0} is:

$$
\text { (X.4) } \quad \cos \left(\mu_{0}\right)=\frac{\mathrm{d}_{\infty}}{\gamma} \quad \Rightarrow \quad \sin \left(\mu_{0}\right)=\sqrt{1-\frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}}
$$

Then, equation (X.2) gives:
(X.5) $\quad \mathrm{Y}\left(\gamma, \mu_{0}, \infty\right)=\gamma=\frac{\mathrm{C}_{\mathrm{d}} \sin \left(\mu_{0}\right)}{\Theta_{\text {or }}\left\{\gamma-\mathrm{d}_{\infty} \cos \left(\mu_{0}\right)\right\}}=\frac{\mathrm{C}_{\mathrm{d}} \sqrt{1-\mathrm{d}_{\infty}{ }^{2} / \gamma^{2}}}{\Theta_{\text {or }}\left(\gamma-\mathrm{d}_{\infty}{ }^{2} / \gamma\right)}$
and C_{d} can be expressed in terms of $\Theta_{\text {or }}$:
(X.6) $\quad \mathrm{C}_{\mathrm{d}}=\Theta_{\text {or }} \gamma \sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}$

Now, the general solution for $Y\left(\right.$) becomes - from equation (X.1) now written in terms of r, α, T_{r} :
(X.7) $\quad Y\left(r, \alpha, T_{r}\right)=\frac{\gamma \sqrt{\gamma^{2}-d_{\infty}{ }^{2}} \mathrm{r} \sin (\alpha) \mathrm{T}_{\mathrm{r}}}{\left\{\gamma^{2}-\mathrm{r} \mathrm{d}_{\infty} \cos (\alpha)\right\} \mathrm{T}_{\mathrm{r}}-\Delta \mathrm{t}_{\mathrm{or}} / \Theta_{\text {or }}}$

In the limit for $\mathrm{T}_{\mathrm{r}} \rightarrow \infty, \mathrm{r} \rightarrow \gamma, \alpha \rightarrow \mu$:
(X.8)

$$
\mathrm{Y}(\gamma, \mu, \infty)=\frac{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\infty}^{2}} \sin (\mu)}{\gamma-\mathrm{d}_{\infty} \cos (\mu)}
$$

and, because $\mathrm{X}(\gamma, \mu, \infty)^{2}+\mathrm{Y}(\gamma, \mu, \infty)^{2}$ has to be equal to γ^{2} :
(X.9) $\quad \mathrm{X}(\gamma, \mu, \infty)=\sqrt{\gamma^{2}-\frac{\gamma^{2}\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right) \sin (\mu)^{2}}{\left\{\gamma-\mathrm{d}_{\infty} \cos (\mu)\right\}^{2}}}=\frac{\gamma\left\{\gamma \cos (\mu)-\mathrm{d}_{\infty}\right\}}{\gamma-\mathrm{d}_{\infty} \cos (\mu)}$
where the + sign of the square root pertains since X()>0 for $\mu=0$. Generally, for the x -components, it was shown in Appendix B that:

(B.20) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\mathrm{X}(\gamma, \mu, \infty)\left(\mathrm{T}_{\mathrm{r}}^{*}-\mathrm{T}_{\mathrm{s}}^{*}\right)+\mathrm{X}\left(\mathrm{s}, \sigma, \mathrm{T}_{\mathrm{s}}\right) \mathrm{T}_{\mathrm{s}}^{*}$

and again, we will take the special case of \vec{s} being the origin of the target system at time $T_{d}, T_{s}=T_{d}, \vec{s}=\vec{d}_{\infty}\left(1-T_{\text {or }} / T_{d}\right)$ so that $\mathrm{X}\left(\mathrm{s}\left(\mathrm{T}_{\mathrm{d}}\right), 0, \mathrm{~T}_{\mathrm{d}}\right)=0$. Applying equation (34a) to equation (35):
(X.10) $\quad \mathrm{T}_{s}^{*}=\Theta_{\text {or }}\left\{\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right) \mathrm{T}_{\mathrm{d}}+\mathrm{d}_{\infty}{ }^{2} \mathrm{~T}_{\text {or }}\right\}-\Delta \mathrm{t}_{\text {or }}$
then applying equations (35), (X.9), (X.10) to equation the right part of (B.20):
(X.11) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\frac{\gamma\left\{\gamma \cos (\mu)-\mathrm{d}_{\infty}\right\}}{\gamma-\mathrm{d}_{\infty} \cos (\mu)}\left(\Theta_{\text {or }}\left\{\gamma^{2}-\mathrm{rd}_{\infty} \cos (\alpha)\right\} \mathrm{T}_{\mathrm{r}}-\Delta \mathrm{t}_{\text {or }}-\Theta_{\text {or }}\left[\left\{\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right) \mathrm{T}_{\mathrm{d}}+\mathrm{d}_{\infty}{ }^{2} \mathrm{~T}_{\text {or }}\right\}-\Delta \mathrm{t}_{\mathrm{or}}\right]\right)$

Again T_{r} and T_{d} are connected by a photon path, now starting from a time-dependent position:

(X.12)

$$
(\vec{\gamma}-\overrightarrow{\mathrm{r}}) \mathrm{T}_{\mathrm{r}}=\left\{\vec{\gamma}-\overrightarrow{\mathrm{d}}\left(\mathrm{~T}_{\mathrm{d}}\right)\right\} \mathrm{T}_{\mathrm{d}}=\left(\vec{\gamma}-\overrightarrow{\mathrm{d}}_{\infty}\right) \mathrm{T}_{\mathrm{d}}+\overrightarrow{\mathrm{d}}_{\infty} \mathrm{T}_{\mathrm{or}}
$$

Taking the x - components of this path equation gives:
(X.13) $\quad\{\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)\} \mathrm{T}_{\mathrm{r}}=\left\{\gamma \cos (\mu)-\mathrm{d}_{\infty}\right\} \mathrm{T}_{\mathrm{d}}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}$
and inserting the resulting T_{d} in the above equation for $X\left(r, \alpha, T_{r}\right) T_{r}^{*}$:
(X.14) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\frac{\gamma \Theta_{\text {or }}}{\gamma-\mathrm{d}_{\infty} \cos (\mu)}\left(\left\{\gamma \cos (\mu)-\mathrm{d}_{\infty}\right\}\left[\left\{\gamma^{2}-\mathrm{r} \mathrm{d}_{\infty} \cos (\alpha)\right\} \mathrm{T}_{\mathrm{r}}-\mathrm{d}_{\infty}{ }^{2} \mathrm{~T}_{\text {or }}\right]\right.$

$$
\left.-\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right)\left[\{\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)\} \mathrm{T}_{\mathrm{r}}-\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}\right]\right)
$$

This can be simplified to:
(X.15) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\gamma^{2} \Theta_{\text {or }}\left[\left\{\mathrm{r} \cos (\alpha)-\mathrm{d}_{\infty}\right\} \mathrm{T}_{\mathrm{r}}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}\right]$
so that, also expliciting $\mathrm{T}_{\mathrm{r}}^{*}$ and dropping the subscript r :
(X.16) $\quad \mathrm{X}(\mathrm{r}, \alpha, \mathrm{T})=\frac{\gamma^{2}\left[\left\{\mathrm{r} \cos (\alpha)-\mathrm{d}_{\infty}\right\} \mathrm{T}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}\right]}{\left\{\gamma^{2}-\mathrm{rd} \mathrm{d}_{\infty} \cos (\alpha)\right\} \mathrm{T}-\Delta \mathrm{t}_{\text {or }} / \Theta_{\text {or }}}$

Switching to Cartesian coordinates this is equation (36):
(36) $\mathrm{x}^{*}\left(\mathrm{~T}_{\text {or }}, \mathrm{d}_{\infty} ; \mathrm{x}, \mathrm{y}, \mathrm{T}\right)=\gamma^{2} \frac{\left(\mathrm{x}-\mathrm{d}_{\infty}\right) \mathrm{T}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}}{\left(\gamma^{2}-\mathrm{xd}_{\infty}\right) \mathrm{T}-\Delta \mathrm{t}_{\text {or }} / \Theta_{\text {or }}}$
where equation (X.7) becomes equation (37):

