Appendix X p.1 XY transformation for moving system

Appendix X to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first
Consequences for Long-distance Physics.

Referred equations: (34a), (35), (36), (37), (B.19), (B.20)

Space transformations for force-free moving systems.

A coordinate transformation is handled for a force-free moving system, for which the time transformation was proven to
be:
(35) T*(Tondw;xsyaT) = ®0r (‘}/2—X doo) T—Ator

and considering the vectors s and T, photon direction p and transformation functions X() and Y() in polar
coordinates as in Appendix B. The above time transformation is inserted into equation (B.19) where X = scos(o):

Cassin(o) Ts

®0r {y 2_ S doo COS(G) }Ts — Ator

At this point, we can repeat the treatment of the non-moving case; in the limit for Ts— o, s—y, ¢ — p the above
equation becomes:

T
(X1)  Y(s,0,Ts) = Cassin(o) 75 =
S

Cqsin(w)
Y(v.p0) =g {y—d.cos(u)}

and that value will have a maximum of y reached fora po for which dY/du=0

__cos(uo) d. sin(u0)?
(X3)  0=2—g COg(uo) {y—do cosguo) ¥

where the constants Cq, ®o have been left out; the solution for po is:

ds . 02
(X.4) cos(uo) = v = sin(pg) =1\ /1 *7

Then, equation (X.2) gives:
v o Casin(uo) _ Cay1-d.2y?
(P00 =Y = 90 {y . 008(a) 3~ Oor (7~ 0. 7)

and Cy can be expressed in terms of Qg :

(X6) Cd = ®or)/ \”/Z_dooz

Now, the general solution for Y() becomes — from equation (X.1) now written in terms of r,a, T;:

(X.2)

(X.5)

)= y 72— w2 rsin(a) Tr
77 {y?—rdwcos(a) } Tr— Ator/Ocr

In the limit for T,—> o, r—y, a— W:

yAY2—du? sin(u)

(X8) Y1) = T "cos(n)

and, because X(y ,u,0)?+ Y(y,u,0)? has to be equal to y?2:
y2(r2-d?)sin(w)?® _y{y cos()-d-}
— 2 —
(X.9) X(y ,p,0) = \/7 T {y—docos() ¥ Ty —d.cos(y)

where the + sign of the square root pertains since X()>0 for = 0. Generally, for the x-components, it was shown in
Appendix B that:

(B.20) X(r,0,Ty) T¥ = X(y,p,00) (TT—T%) +X(s,0,Ts) T¥

and again, we will take the special case of 5 being the origin of the target system at time Tq, Ts=Tq, S = tw (1 — To/Ta)
so that X(s(Tq),0,Tq) = 0. Applying equation (34a) to equation (35):
(X.10) %= Qo { (2= du?) Ta+de® Tor } — Atir

then applying equations (35), (X.9), (X.10) to equation the right part of (B.20):

*doo
(X11)  X(raT)TE=5 {yyfgjgé)s(u) .

Again T, and Tq4 are connected by a photon path, now starting from a time-dependent position:
X12) @F-MTi={y-d(Ta)}Ta=(Y—dx) Ta+dx Tor

Taking the x- components of this path equation gives:
(X.13)  {ycos(p)—rcos(a) } Tr={ycos(l) —dew} Ta+ e Tor

X.7) Y(r,a,T

(Oor {7210 COS(@) } Tr— Ator— Oor [{ (2~ 0D Ty + 2 Tor } - Ator])
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and inserting the resulting Tg in the above equation for X(r,0,Ty) TT:
T oty (L oS- G H L0710 05(@) T~ 0.2 T
= (y?—d.?) [{y cos()—rcos(c) } Tr—d. Tor])
This can be simplified to:
(X.15)  X(r,o,T) TF =92 Oor [{rcos(a) — 0w } Tr+ dw Tor ]
so that, also expliciting TF and dropping the subscript r:
y2[{rcos(a)—du} T+du Tor]
{y?—rdscos(a) } T— Ator/Or
Switching to Cartesian coordinates this is equation (36):
(X=0x) T+do Tor
2_ X 0he) T— Ator/Oor
where equation (X.7) becomes equation (37):

yNY2 -d2yT

Xile) = ()/2 —X doo) T—Ator/@)or

(X.14) X(r,o,T)Tr =

(X.16) X(r,0,T)=

(36) X*(Tor,dw;X,y,T) =92 v

(B7) Y*(Tor,dx;
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