Appendix V to:

A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first

 Consequences for Long-distance Physics.Referred equations: (24), (25), (26), (34a), (43), (44), (45), (46), (47), (48), (49), (50), (51)

(1) Testing combined displacement in the same direction

Here, the non-moving system equations (24) - (26) are applicable. If we apply a transformation twice, d_{1} and d_{2} respectively, the end result should be a non-moving system transformation also, with a combined distance d. This will be worked out starting from the time transformation equation (24) applied to the transformed variables then using equations (24), (25):

$$
\begin{align*}
& \left(\mathrm{T}^{*}\right)^{*}=\frac{\gamma^{2}-\mathrm{x}^{*} \mathrm{~d}_{1}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{1}^{2}} \mathrm{~T}^{*}}=\frac{1}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{1}^{2}}}\left\{\gamma^{2} \frac{\gamma^{2}-\mathrm{xd}_{2}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{2}^{2}}}-\mathrm{d}_{1} \frac{\gamma\left(\mathrm{x}-\mathrm{d}_{2}\right)}{\sqrt{\gamma^{2}-\mathrm{d}_{2}^{2}}}\right\} \mathrm{T} \tag{V.1}\\
& =\frac{\gamma^{2}+\mathrm{d}_{1} \mathrm{~d}_{2}-\mathrm{x}\left(\mathrm{~d}_{1}+\mathrm{d}_{2}\right)}{\sqrt{\left(\gamma^{2}-\mathrm{d}_{1}^{2}\right)\left(\gamma^{2}-\mathrm{d}_{2}^{2}\right)}} \mathrm{T}
\end{align*}
$$

and this should be identical to a transformation with a combined d :
(V.2)

$$
\left(\mathrm{T}^{*}\right)^{*} \equiv \frac{\gamma^{2}-\mathrm{xd}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}}} \mathrm{~T}
$$

so that, from comparing the terms in the numerators:
(V.3) $\quad\left(\gamma^{2}+d_{1} d_{2}\right) \div\left(d_{1}+d_{2}\right)=\gamma^{2} \div d$
leading to:
(46) $\mathrm{d}=\frac{\gamma^{2}\left(\mathrm{~d}_{1}+\mathrm{d}_{2}\right)}{\gamma^{2}+\mathrm{d}_{1} \mathrm{~d}_{2}}$
where indeed, concerning the denominator:

$$
\begin{equation*}
\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}}=\gamma \frac{\sqrt{\gamma^{2}\left(\gamma^{2}+\mathrm{d}_{1} \mathrm{~d}_{2}\right)^{2}-\gamma^{4}\left(\mathrm{~d}_{1}+\mathrm{d}_{2}\right)^{2}}}{\gamma^{2}+\mathrm{d}_{1} \mathrm{~d}_{2}}=\frac{\gamma^{2}}{\gamma^{2}+\mathrm{d}_{1} \mathrm{~d}_{2}} \sqrt{\left(\gamma^{2}-\mathrm{d}_{1}^{2}\right)\left(\gamma^{2}-\mathrm{d}_{2}^{2}\right)} \tag{V.4}
\end{equation*}
$$

(2) Testing combined displacement in perpendicular directions

Again applying a non-moving system transformation twice, now in perpendicular directions d_{x} and d_{y}, the end result should be a non-moving system transformation with a combined distance d and a combined direction $\overrightarrow{\mathrm{x}}$. Again, this will be worked out starting from the time transformation, where the first step is in the y-direction - note, that this is the x-direction of the perpendicular system:

$$
\begin{align*}
& \left(\mathrm{T}^{*}\right)^{*}=\frac{\gamma^{2}-\mathrm{y}^{*} \mathrm{~d}_{\mathrm{y}}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{y}}^{2}}} \mathrm{~T}^{*}=\frac{1}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{y}}^{2}}}\left\{\gamma^{2} \frac{\gamma^{2}-\mathrm{xd}_{\mathrm{x}}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{x}}^{2}}}-\mathrm{yd}_{\mathrm{y}}\right\} \mathrm{T} \tag{V.5}\\
& =\frac{\gamma^{2}-\mathrm{xd}_{\mathrm{x}}-\mathrm{yd}_{\mathrm{y}} \frac{\sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{x}}^{2}}}{\gamma}}{\sqrt{\left(\gamma^{2}-\mathrm{d}_{\mathrm{x}}^{2}\right)\left(\gamma^{2}-\mathrm{d}_{\mathrm{y}}^{2}\right)}} \mathrm{T}
\end{align*}
$$

The x and y will be components of the new vector $\overrightarrow{\mathrm{x}}$:
(V.6) $x=\tilde{x} \cos (\phi) \quad y=\tilde{x} \sin (\phi)$
where $\tilde{x}=|\vec{x}|$, so that:

$$
\begin{equation*}
\left(\mathrm{T}^{*}\right)^{*}=\frac{\gamma^{2}-\tilde{\mathrm{x}}\left\{\cos (\phi) \mathrm{d}_{\mathrm{x}}+\sin (\phi) \mathrm{d}_{\mathrm{y}} \frac{\sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{x}}{ }^{2}}}{\gamma}\right\}}{\sqrt{\left(\gamma^{2}-\mathrm{d}_{\mathrm{x}}^{2}\right)\left(\gamma^{2}-\mathrm{d}_{\mathrm{y}}{ }^{2}\right)}} \mathrm{T} \tag{V.7}
\end{equation*}
$$

And that should be identical to:

$$
\begin{equation*}
\left(\mathrm{T}^{*}\right)^{*}=\mathrm{T}^{*}(\mathrm{~d}, \tilde{\mathrm{x}} ; 0, \mathrm{~T})=\frac{\gamma^{2}-\tilde{\mathrm{x}} \mathrm{~d}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}}} \mathrm{~T} \tag{V.8}
\end{equation*}
$$

Since the constant term γ^{2} in the numerator is the same, the denominators (squared) must be identical:
(V.9) $\quad \gamma^{2}\left(\gamma^{2}-d^{2}\right)=\left(\gamma^{2}-d_{x}{ }^{2}\right)\left(\gamma^{2}-d_{y}{ }^{2}\right)$
leading to:
(47)
$d=\sqrt{d_{x}{ }^{2}+d_{y}{ }^{2}-\frac{d_{x}{ }^{2} d_{y}{ }^{2}}{\gamma^{2}}}$
and the angle ϕ can be found from equating the parts following $\tilde{\mathrm{x}}$ in the numerator:

$$
\begin{equation*}
\mathrm{d}=\cos (\phi) \mathrm{d}_{\mathrm{x}}+\sin (\phi) \mathrm{d}_{\mathrm{y}} \frac{\sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{x}}^{2}}}{\gamma} \tag{V.10}
\end{equation*}
$$

which can be solved after some math as:
(V.11) $\quad \cos (\phi)=\frac{\mathrm{d}_{\mathrm{x}}}{\mathrm{d}}$
$\sin (\phi)=\frac{\mathrm{d}_{\mathrm{y}} \sqrt{\gamma^{2}-\mathrm{d}_{\mathrm{x}}{ }^{2}}}{\gamma \mathrm{~d}}$
so $\quad \tan (\phi)=\frac{d_{y} \sqrt{\gamma^{2}-d_{x}{ }^{2}}}{\gamma d_{x}}$

The first part being equation (48).

(3) Force-free movement in a force-free moving system along the same direction

Here and in the following case, the moving system equations (34a) and (43) - (45) are applicable. Consider a system moving in the x -direction according to $\mathrm{d}(\mathrm{T})=\mathrm{d}_{\infty}\left(1-\mathrm{T}_{\text {or }} / \mathrm{T}\right)$ and an object force-free moving in that system also along the x direction, coordinates $\mathrm{x}^{*}, \mathrm{y}^{*}$ where $\mathrm{y}^{*}=0$, so according to:
(V.12) $\quad \mathrm{x}^{*}\left(\mathrm{~T}^{*}\right)=\mathrm{x}_{\infty}^{*}\left(1-\mathrm{T}_{\mathrm{x}}^{*} / \mathrm{T}^{*}\right)$
which is better worked out when both sides are multiplied by T^{*} :
(V.13) $\mathrm{x}^{*} \mathrm{~T}^{*}=\mathrm{x}_{\infty}^{*}\left(\mathrm{~T}^{*}-\mathrm{T}_{\mathrm{x}}^{*}\right)$

Applying the moving-system equations (43), (44) to both sides:
(V.14)

$$
\frac{\gamma\left\{\left(\mathrm{x}-\mathrm{d}_{\infty}\right) \mathrm{T}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}\right\}}{\sqrt{\gamma^{2}-\mathrm{d}_{\infty}^{2}}}=\mathrm{x}_{\infty}^{*}\left\{\mathrm{~T}_{\mathrm{or}}^{*}+\frac{\gamma^{2}-\mathrm{xd}_{\infty}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\infty}^{2}}} \mathrm{~T}-\frac{\gamma}{\sqrt{\gamma^{2}-\mathrm{d}_{\infty}^{2}}} \mathrm{~T}_{\text {or }}-\mathrm{T}_{\mathrm{x}}^{*}\right\}
$$

which after multiplying both sides with $\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}$ can be rearranged to:
(V.15) $\quad\left(\gamma^{2}+\mathrm{x}_{\infty}^{*} \mathrm{~d}_{\infty}\right) \mathrm{xT}=\gamma^{2}\left(\mathrm{x}_{\infty}^{*}+\mathrm{d}_{\infty}\right) \mathrm{T}-\gamma \mathrm{X}_{\infty}^{*}\left\{\gamma \mathrm{~T}_{\text {or }}+\sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}\left(\mathrm{~T}_{\mathrm{x}}^{*}-\mathrm{T}_{\text {or }}^{*}\right)\right\}-\gamma^{2} \mathrm{~d}_{\infty} \mathrm{T}_{\text {or }}$
so that also in the observer system it is a force-free movement:
(V.16) $\quad \mathrm{xT}=\mathrm{X}_{\infty}\left(\mathrm{T}-\mathrm{T}_{\mathrm{x}}\right)$
where
(49) $\mathrm{x}_{\infty}=\frac{\gamma^{2}\left(\mathrm{x}_{\infty}^{*}+\mathrm{d}_{\infty}\right)}{\gamma^{2}+\mathrm{x}_{\infty}^{*} \mathrm{~d}_{\infty}}$
(V.17)

$$
\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{or}}+\frac{\mathrm{x}_{\infty}^{*} \sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}}{\gamma\left(\mathrm{x}_{\infty}^{*}+\mathrm{d}_{\infty}\right)}\left(\mathrm{T}_{\mathrm{x}}^{*}-\mathrm{T}_{\text {or }}^{*}\right)
$$

(4) Force-free movement in a force-free moving system perpendicular to its observed direction

Now consider a system moving in the x -direction according to $\mathrm{d}(\mathrm{T})=\mathrm{d}_{\infty}\left(1-\mathrm{T}_{\mathrm{or}} / \mathrm{T}\right)$ and an object force-free moving in that system along the y -direction, coordinates $\mathrm{x}^{*}, \mathrm{y}^{*}$ where $\mathrm{x}^{*}=0$, so according to:
(V.18) $y^{*}\left(T^{*}\right)=y_{\infty}^{*}\left(1-T_{y}^{*} / T^{*}\right)$

Since for the moving object $x^{*}=0$, it follows directly from equation (44) that for its x-coordinate $x(T)$ in the observer's system:
(V.19) $0=\gamma^{2}\left[\left\{\left(\mathrm{x}(\mathrm{T})-\mathrm{d}_{\infty}\right\} \mathrm{T}+\mathrm{d}_{\infty} \mathrm{T}_{\text {or }}\right] \quad \Rightarrow \quad \mathrm{x}(\mathrm{T})=\mathrm{d}_{\infty}\left(1-\mathrm{T}_{\text {or }} / \mathrm{T}\right)\right.$
which can be inserted in equation (43) to express its T^{*} in terms of T :

$$
\begin{equation*}
\mathrm{T}^{*}=\mathrm{T}_{o \mathrm{or}}^{*}+\frac{\gamma^{2} \mathrm{~T}-\mathrm{d}_{\infty}{ }^{2}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{or}}\right)-\gamma^{2} \mathrm{~T}_{\text {or }}}{\gamma \sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}}=\mathrm{T}_{\mathrm{or} \mathrm{r}}^{*}+\frac{\sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}}{\gamma}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{or}}\right) \tag{V.20}
\end{equation*}
$$

Then, from equation (V.18):

$$
\begin{equation*}
\mathrm{y}^{*}\left(\mathrm{~T}^{*}\right) \mathrm{T}^{*}=\mathrm{y}_{\infty}^{*}\left(\mathrm{~T}^{*}-\mathrm{T}_{\mathrm{y}}^{*}\right)=\mathrm{y}_{\infty}^{*} \frac{\sqrt{\gamma^{2}-\mathrm{d}_{\infty}^{2}}}{\gamma}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{or}}\right)+\mathrm{y}_{\infty}^{*}\left(\mathrm{~T}_{\mathrm{or}}^{*}-\mathrm{T}_{\mathrm{y}}^{*}\right) \tag{V.21}
\end{equation*}
$$

which according to the combination of equations (43) and (45) is equal to $y(T) T$ so that:
(V.22) $y(T)=y_{\infty}^{*} \frac{\sqrt{\gamma^{2}-d_{\infty}^{2}}}{\gamma}\left(1-\mathrm{T}_{\text {or }} / \mathrm{T}\right)+\mathrm{y}_{\infty}^{*}\left(\mathrm{~T}_{\text {or }}^{*}-\mathrm{T}_{y}^{*}\right) / \mathrm{T}$

For $T_{o r}^{*}=T_{y}^{*}$, these $x(T), y(T)$ should describe a trajectory of a force-free moving object passing the origin at time $T_{\text {or }}$ with limit distance $\tilde{\mathrm{x}}_{\infty}$ under an angle ϕ with the x -axis:

$$
\left\{\begin{array}{l}
\mathrm{x}(\mathrm{~T})=\tilde{\mathrm{x}}_{\infty} \cos (\phi)\left(1-\mathrm{T}_{\text {or }} / \mathrm{T}\right) \tag{V.23}\\
\mathrm{y}(\mathrm{~T})=\tilde{\mathrm{x}}_{\infty} \sin (\phi)\left(1-\mathrm{T}_{\text {or }} / \mathrm{T}\right)
\end{array}\right.
$$

so that from comparison with the above found $x(T), y(T)$, equations (V.19), (V.22):
(V.24) $\left\{\begin{array}{l}\tilde{\mathrm{x}}_{\infty} \cos (\phi)=\mathrm{d}_{\infty} \\ \tilde{\mathrm{x}}_{\infty} \sin (\phi)=\mathrm{y}_{\infty}^{*} \frac{\sqrt{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}}{\gamma}\end{array}\right.$

The top part is equation (51):
(51) $\cos (\phi)=\frac{\mathrm{d}_{\infty}}{\tilde{\mathrm{X}}_{\infty}}$

And the squared sum:
(V.25) $\quad \tilde{\mathrm{x}}_{\infty}{ }^{2}=\mathrm{d}_{\infty}{ }^{2}+\mathrm{y}_{\infty}^{*} 2 \frac{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}=\mathrm{d}_{\infty}{ }^{2}+\mathrm{y}_{\infty}^{* 2}-\frac{\mathrm{d}_{\infty}{ }^{2} \mathrm{y}_{\infty}^{* 2}}{\gamma^{2}}$
leads to equation (50).

