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Appendix V  to: 
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first 
Consequences for Long-distance Physics.  
 Referred equations:  (24), (25), (26), (34a), (43), (44), (45), (46), (47), (48), (49), (50), (51) 

❶ Testing combined displacement in the same direction 

Here, the non-moving system equations (24) – (26) are applicable. If we apply a transformation twice,  d1  and  d2  

respectively, the end result should be a non-moving system transformation also, with a combined distance  d. This will be 

worked out starting from the time transformation equation (24) applied to the transformed variables then using equations 

(24), (25): 
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and this should be identical to a transformation with a combined  d: 
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so that, from comparing the terms in the numerators: 
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where indeed, concerning the denominator: 
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❷ Testing combined displacement in perpendicular directions 

Again applying a non-moving system transformation twice, now in perpendicular directions  dx  and  dy, the end result 

should be a non-moving system transformation with a combined distance  d  and a combined direction  x~ →. Again, this will be 

worked out starting from the time transformation, where the first step is in the y-direction – note, that this is the x-direction of 

the perpendicular system: 
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The  x  and  y  will be components of the new vector  x~ →: 

(V.6)   x = x̃ cos(ϕ)  y = x̃ sin(ϕ) 

where  x̃ = |x~ →|, so that: 
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And that should be identical to: 

(V.8)   (T*)* = T*(d,x̃;0,T) = 


2 – x̃ d

 
2 – d2 

 T 

Since the constant term  2  in the numerator is the same, the denominators (squared) must be identical: 
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and the angle  ϕ  can be found from equating the parts following  x̃  in the numerator: 

(V.10) d = cos(ϕ) dx + sin(ϕ) dy 


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which can be solved after some math as: 
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The first part being equation (48). 

❸ Force-free movement in a force-free moving system along the same direction 

Here and in the following case, the moving system equations (34a) and (43) – (45) are applicable. Consider a system 

moving in the x-direction according to  d(T) = d∞ (1 – Tor/T)  and an object force-free moving in that system also along the x-

direction,  coordinates  x*, y*  where  y* = 0, so according to: 

(V.12) x*(T*) = x*∞ (1 – T*x /T*) 

which is better worked out when both sides are multiplied by  T*: 

(V.13) x*T* = x*∞ (T* – T*x) 

Applying the moving-system equations (43), (44) to both sides: 
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which after multiplying both sides with   
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2   can be rearranged to: 
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so that also in the observer system it is a force-free movement: 

(V.16) xT = x∞(T – Tx) 

where 
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❹ Force-free movement in a force-free moving system perpendicular to its observed direction 

Now consider a system moving in the x-direction according to  d(T) = d∞ (1 – Tor/T)  and an object force-free moving in 

that system along the y-direction,  coordinates  x*, y*  where  x* = 0, so according to: 

(V.18) y*(T*) = y*∞  (1 – T*y /T*) 

Since for the moving object  x* = 0,  it follows directly from equation (44) that for its x-coordinate  x(T)  in the observer’s 

system: 

(V.19) 0 = 2 [ { (x(T) – d∞ } T + d∞Tor ]    ═>    x(T) = d∞ (1 – Tor /T) 

which can be inserted in equation (43) to express its  T*  in terms of  T: 
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Then, from equation (V.18): 
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which according to the combination of equations (43) and (45) is equal to  y(T) T  so that: 
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For  T* 
or = T*y ,  these  x(T), y(T)  should describe a trajectory of a force-free moving object passing the origin at time  Tor  

with limit distance  x̃∞  under an angle  ϕ  with the x-axis: 

(V.23) 
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so that from comparison with the above found  x(T), y(T), equations (V.19), (V.22): 
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(V.24) 





 x̃∞ cos(ϕ) = d∞

 x̃∞ sin(ϕ) = y*∞ 


2 – d∞

2 



 

The top part is equation (51): 
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And the squared sum: 
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leads to equation (50). 
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