Appendix T to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (9), (12), (13), (14), (31), (34), (34a) (35)

Basic time transformation for force-free moving system

Again, a photon is considered travelling from then back to the origin of the now moving system, similar to equation (13) but now with different starting and ending locations:

$$
\begin{array}{ll}
\overrightarrow{\mathrm{r}}_{\mathrm{ph}}\left(\mathrm{~T}_{1}\right)=\mathrm{d}_{1}=\mathrm{d}\left(\mathrm{~T}_{1}\right) & \overrightarrow{\mathrm{r}}_{\mathrm{ph}}^{*}\left(\mathrm{~T}_{1}^{*}\right)=0 \\
\overrightarrow{\mathrm{r}}_{\mathrm{Ph}}\left(\mathrm{~T}_{\mathrm{m}}\right)=\overrightarrow{\mathrm{r}}_{\mathrm{m}} & \left.\overrightarrow{\mathrm{r}}_{\mathrm{ph}}^{*} \mathrm{~T}_{\mathrm{m}}^{*}\right)=\overrightarrow{\mathrm{r}}_{\mathrm{m}}^{*} \tag{T.1}\\
\overrightarrow{\mathrm{r}}_{\mathrm{ph}}\left(\mathrm{~T}_{2}\right)=\mathrm{d}_{2}=\mathrm{d}\left(\mathrm{~T}_{2}\right) & \overrightarrow{\mathrm{r}}_{\mathrm{ph}}^{*}\left(\mathrm{~T}_{2}^{*}\right)=0
\end{array}
$$

where $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ is the target location and the relations between $\mathrm{T}_{\mathrm{m}}, \mathrm{T}_{1}$ and T_{2} now are, from equations (9) and (34a) with corresponding $\vec{\gamma}_{\mathrm{m}}, \vec{\gamma}_{\mathrm{d}}$:

$$
\begin{align*}
& \vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}=\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\infty}\right) \frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{m}}}+\overrightarrow{\mathrm{d}}_{\infty} \frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{\mathrm{m}}} \\
& \vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}=\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{d}}_{\infty}\right) \frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{m}}}+\overrightarrow{\mathrm{d}}_{\infty} \frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{\mathrm{m}}} \tag{T.2}
\end{align*}
$$

However, these are implicit relationships because also the $\vec{\gamma}_{\mathrm{m}}, \vec{\gamma}_{\mathrm{d}}$ depend on T_{1}, T_{2} respectively. Considering the top equation, travel from $\overrightarrow{\mathrm{d}}_{1}$ to $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$, towards $\vec{\gamma}_{\mathrm{m}}$, the situation is depicted in the figure at the right. In the triangle PQR , the left side, PR , is the vector $\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ and consequently the other sides must consist of the other vectors, according to their direction:

$$
\begin{equation*}
\mathrm{PQ}=\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\infty}\right) \frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{m}}} \quad \mathrm{RQ}=\mathrm{d}_{\infty} \frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{\mathrm{m}}} \tag{T.3}
\end{equation*}
$$

thus the point Q is:

$$
\begin{equation*}
\mathrm{Q}=\overrightarrow{\mathrm{r}}_{\mathrm{m}}+\overrightarrow{\mathrm{d}}_{\infty} \frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{\mathrm{m}}} \tag{T.4}
\end{equation*}
$$

so that the line where the P, Q and d_{∞} are located is described by:

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{d}}_{\infty}+\mathrm{u}\left\{\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\infty}\left(1-\frac{\mathrm{T}_{o r}}{\mathrm{~T}_{\mathrm{m}}}\right)\right\}=\overrightarrow{\mathrm{d}}_{\infty}+\mathrm{u}\left(\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right) \tag{T.5}
\end{equation*}
$$

where \vec{r} is a point on the line, u is the corresponding location on the line and $\vec{d}_{m}=\vec{d}_{\infty}\left(1-T_{\text {or }} / T_{m}\right) . Q$ is reached for u $=1$ and P will be reached for an u_{e} where $|\overrightarrow{\mathrm{r}}|^{2}=\gamma^{2}$:
(T.6)

$$
\begin{equation*}
\gamma^{2}=\left|\overrightarrow{\mathrm{d}}_{\infty}+\mathrm{u}_{\mathrm{e}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right)\right|^{2}=\mathrm{d}_{\infty}{ }^{2}+2 \mathrm{u}_{\mathrm{e}} \mathrm{~d}_{\infty} \bullet\left(\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right)+\mathrm{u}_{\mathrm{e}}^{2}\left|\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right|^{2} \tag{T.6}
\end{equation*}
$$

Note, that u_{e} is positive since $\vec{\gamma}_{\mathrm{m}}$ and $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ are at the same side of the x -axis. This equation is rewritten as:

$$
\begin{equation*}
\left(\gamma^{2}-\mathrm{d}_{\infty}^{2}\right)\left(\frac{1}{\mathrm{u}_{\mathrm{e}}}\right)^{2}-\overrightarrow{\mathrm{d}}_{\infty} \cdot\left(\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right) \frac{2}{\mathrm{u}_{\mathrm{e}}}-\left|\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\mathrm{m}}\right|^{2}=0 \tag{T.7}
\end{equation*}
$$

from which can be solved - note, that $\mathbb{d}_{\infty} \bullet \overrightarrow{\mathrm{r}}_{\mathrm{m}}=\mathrm{d}_{\infty} \mathrm{X}_{\mathrm{m}}$ and $\overrightarrow{\mathrm{d}}_{\infty} \bullet \overrightarrow{\mathrm{d}}_{\mathrm{m}}=\mathrm{d}_{\infty}\left|\mathrm{d}_{\mathrm{m}}\right|$:

$$
\begin{equation*}
\frac{1}{\mathrm{u}_{\mathrm{e}}}\left(\gamma^{2}-\mathrm{d}_{\infty}^{2}\right)=\mathrm{d}_{\infty}\left(\mathrm{x}_{\mathrm{m}}-\left|\mathrm{d}_{\mathrm{m}}\right|\right)+\sqrt{\gamma^{2}\left|\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\mathrm{d}_{\mathrm{m}}\right|^{2}-\mathrm{y}_{\mathrm{m}}^{2} \mathrm{~d}_{\infty}{ }^{2}} \tag{T.8}
\end{equation*}
$$

where the + sign of the square root pertains since u_{e} is positive. PQ can be expressed as a part $u_{e}-1$ of the total line piece u_{e} :

$$
\begin{equation*}
\mathrm{PQ}=\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}_{\infty}\right) \frac{\mathrm{u}_{\mathrm{e}}-1}{\mathrm{u}_{\mathrm{e}}} \tag{T.9}
\end{equation*}
$$

so that combination with equation (T.3):

$$
\begin{equation*}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{m}}}=\frac{\mathrm{u}_{\mathrm{e}}-1}{\mathrm{u}_{\mathrm{e}}}=1-\frac{1}{\mathrm{u}_{\mathrm{e}}} \tag{T.10}
\end{equation*}
$$

leads to, after some math:

$$
\begin{equation*}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{m}}}\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right)=\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{~d}_{\infty}-\mathrm{d}_{\infty}{ }^{2} \frac{\mathrm{~T}_{\text {or }}}{\mathrm{T}_{\mathrm{m}}}-\sqrt{\gamma^{2}\left|\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\mathrm{d}_{\mathrm{m}}\right|^{2}-\mathrm{y}_{\mathrm{m}}^{2} \mathrm{~d}_{\infty}{ }^{2}} \tag{T.11}
\end{equation*}
$$

Following the same treatment for the back travel, we derive for T_{2} :

$$
\begin{equation*}
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{m}}}\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right)=\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{~d}_{\infty}-\mathrm{d}_{\infty}{ }^{2} \frac{\mathrm{~T}_{\text {or }}}{\mathrm{T}_{\mathrm{m}}}+\sqrt{\gamma^{2}\left|\overrightarrow{\mathrm{r}}_{\mathrm{m}}-\mathrm{d}_{\mathrm{m}}\right|^{2}-\mathrm{y}_{\mathrm{m}}{ }^{2} \mathrm{~d}_{\infty}{ }^{2}} \tag{T.12}
\end{equation*}
$$

so that:

$$
\begin{equation*}
\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{m}}}\left(\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}\right)=2\left(\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{~d}_{\infty}-\mathrm{d}_{\infty} \frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{\mathrm{m}}}\right) \tag{T.13}
\end{equation*}
$$

For the moving system, equation (14)
(14) $2 \mathrm{~T}_{\mathrm{m}}^{*}=\mathrm{T}_{1}^{*}+\mathrm{T}_{2}^{*}$
remains valid - the right part of equation (T.1) is identical to that of equation (13) - so that combination with the universally valid equation (12):
(12) $\mathrm{T}^{*}(\mathrm{x}, \mathrm{y}, \mathrm{T})=\Theta(\mathrm{x}, \mathrm{y}) \mathrm{T}-\Delta \mathrm{t}_{\mathrm{or}}$
leads to - again, the parameters $T_{\text {or }}$, $\mathrm{v}_{\text {or }}$ are left out to improve readability:
(T.14) $2 \Theta\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}=\Theta\left(\mathrm{d}_{1} ; 0\right) \mathrm{T}_{1}+\Theta\left(\mathrm{d}_{2}, 0\right) \mathrm{T}_{2}$

According to Appendix M, the exact form of equation (31) is universally valid so that:
(T.15) $\quad 2 \Theta\left(x_{m}, y_{m}\right) T_{m}=\Theta(0,0)\left\{1-\frac{\mathrm{d}_{1} \mathrm{~V}_{\text {or }} T_{\text {or }}}{\gamma^{2}}\right\} \mathrm{T}_{1}+\Theta(0,0)\left\{1-\frac{\mathrm{d}_{2} \mathrm{~V}_{\text {or }} \mathrm{T}_{\text {or }}}{\gamma^{2}}\right\} \mathrm{T}_{2}$

Applying equation (34) for $d_{1}=d\left(T_{1}\right)$ and $d_{2}=d\left(T_{2}\right)$ and replacing $\mathrm{v}_{\text {or }} \mathrm{T}_{\text {or }}$ by d_{∞} :
(T.16)

$$
\text { 6) } \begin{aligned}
& 2 \Theta\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}=\Theta(0,0)\left\{1-\frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}\left(1-\frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{1}}\right)\right\} \mathrm{T}_{1}+\Theta(0,0)\left\{1-\frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}\left(1-\frac{\mathrm{T}_{\mathrm{or}}}{\mathrm{~T}_{2}}\right)\right\} \mathrm{T}_{2} \\
= & \Theta(0,0)\left(1-\frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}\right)\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)+2 \Theta(0,0) \frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}} \mathrm{~T}_{\text {or }}
\end{aligned}
$$

so that combination with equation (T.13) gives:
(T.17)

$$
2 \Theta\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}=\Theta(0,0)\left(1-\frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}}\right) 2 \frac{\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{~d}_{\infty}-\mathrm{d}_{\infty} 2 \frac{\mathrm{~T}_{\text {or }}}{\mathrm{T}_{\mathrm{m}}}}{\gamma^{2}-\mathrm{d}_{\infty}{ }^{2}} \mathrm{~T}_{\mathrm{m}}+2 \Theta(0,0) \frac{\mathrm{d}_{\infty}{ }^{2}}{\gamma^{2}} \mathrm{~T}_{\mathrm{or}}
$$

leading to - dropping the index m :
(T.18)

$$
\Theta(\mathrm{x}, \mathrm{y})=\Theta(0,0) \frac{\gamma^{2}-\mathrm{xd}_{\infty}}{\gamma^{2}}
$$

And equation (12) becomes, now expliciting the parameters $\mathrm{T}_{\text {or }}, \mathrm{d}_{\infty}$:
(35) $\mathrm{T}^{*}\left(\mathrm{~T}_{\text {or }}, \mathrm{d}_{\infty} ; \mathrm{x}, \mathrm{y}, \mathrm{T}\right)=\Theta_{\text {or }}\left(\gamma^{2}-\mathrm{xd}_{\infty}\right) \mathrm{T}-\Delta \mathrm{t}_{\text {or }}$
defining an adequate constant $\Theta_{\text {or }}$.

