Appendix R to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (9), (13), (16)

Derivation of the travel time relation equation for displacement

Considering the two photon trajectories of equation (13), from d at time T_{1} to $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ at time T_{m} and back from $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ at time T_{m} to \mathbb{d} at time T_{2}, and inserting these into the equation for the photon path, equation (9), results in:

$$
\begin{align*}
& \left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}=\left(\vec{\gamma}_{\mathrm{m}}-\mathrm{d}\right) \mathrm{T}_{1} \tag{R.1}\\
& \left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}=\left(\vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right) \mathrm{T}_{2}
\end{align*}
$$

where $\vec{\gamma}_{\mathrm{m}}$ and $\vec{\gamma}_{\mathrm{d}}$ are the respective limit locations of the photons. Both equations can be combined into an equation for the summed times $\mathrm{T}_{1}+\mathrm{T}_{2}$:
(R.2)

$$
\begin{equation*}
\left(\vec{\gamma}_{\mathrm{m}}-\mathbb{\mathrm { d }}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathbb{\mathrm { d }}\right)\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\left\{\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathbb{\mathrm { d }}\right)+\left(\vec{\gamma}_{\mathrm{m}}-\mathbb{\mathrm { d }}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)\right\} \mathrm{T}_{\mathrm{m}} \tag{R.2}
\end{equation*}
$$

where - denotes the vector inner product. The situation of equation (R.1) is schematically given in the figure at the right. $\vec{\gamma}_{\mathrm{d}}$, $\mathbb{\mathrm { d }}, \overrightarrow{\mathrm{r}}_{\mathrm{m}}$ and $\vec{\gamma}_{\mathrm{m}}$ are on the same trajectory, the part between \mathbb{d} and $\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ travelled forth and back respectively by either photon. Perpendicular to that, a construction line \vec{a} is drawn: $\vec{a}=1 / 2\left(\vec{\gamma}_{d}+\vec{\gamma}_{m}\right)$, and the distance to \mathbb{d} is indicated as $\mathfrak{b}: \mathfrak{b}=\mathbb{d}-\vec{a}$. Since the triangle formed by $\vec{\gamma}_{\mathrm{d}}, \vec{\gamma}_{\mathrm{m}}$ is isosceles (both these sidelines have a length γ) $\vec{\gamma}_{d}-\vec{a}=\vec{a}-\vec{\gamma}_{m}$ where their length is $\sqrt{\gamma^{2}-\mathrm{a}^{2}}$. Then, for the left-hand part of equation (R.2) - note, that $\mathrm{d}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$:

$$
\text { (R.3) } \begin{aligned}
& \left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{d}}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right)=\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}\right) \\
= & \left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{a}}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{a}}\right)-\left(\vec{\gamma}_{\mathrm{m}}+\vec{\gamma}_{\mathrm{d}}-2 \overrightarrow{\mathrm{a}}\right) \cdot \vec{b}+\mathrm{b}^{2} \\
= & -\left(\gamma^{2}-\mathrm{a}^{2}\right)+0+\mathrm{b}^{2} \\
= & -\left(\gamma^{2}-\mathrm{d}^{2}\right)
\end{aligned}
$$

And for the right-hand part of equation (R.2):
(R.4) $\left.\quad\left(\vec{\gamma}_{\mathrm{m}}-\mathrm{d}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)+\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \cdot \bullet \vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right)$

$$
\begin{aligned}
& =\left(\vec{\gamma}_{\mathrm{m}}-\mathrm{d}\right) \cdot\left\{\vec{\gamma}_{\mathrm{d}}-\mathrm{d}+\left(\mathrm{d}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)\right\}+\left\{\vec{\gamma}_{\mathrm{m}}-\mathrm{d}+\left(\mathrm{d}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)\right\} \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right) \\
& =2\left(\vec{\gamma}_{\mathrm{m}}-\mathrm{d}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right)+\left(\vec{\gamma}_{\mathrm{m}}+\vec{\gamma}_{\mathrm{d}}\right) \cdot\left(\mathrm{d}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)-2 \mathrm{~d} \cdot\left(\mathrm{~d}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)
\end{aligned}
$$

However, $\vec{\gamma}_{\mathrm{m}}+\vec{\gamma}_{\mathrm{d}}=2 \overrightarrow{\mathrm{a}}$ is perpendicular to $\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}$ so that their inner product is zero. Then, also using the first result, we derive:

$$
\text { (R.5) } \begin{aligned}
& \left(\vec{\gamma}_{\mathrm{m}}-\mathrm{d}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right)+\left(\vec{\gamma}_{\mathrm{m}}-\overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \cdot\left(\vec{\gamma}_{\mathrm{d}}-\mathrm{d}\right) \\
= & -2\left(\gamma^{2}-\mathrm{d}^{2}\right)+0-2 \mathrm{~d}^{2}+2 \mathrm{~d} \cdot \overrightarrow{\mathrm{r}}_{\mathrm{m}} \\
= & -2\left(\gamma^{2}-\mathrm{d} \cdot \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right) \\
= & -2\left(\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{~d}\right)
\end{aligned}
$$

so that equation (R.2) becomes:
(16) $\left(\gamma^{2}-\mathrm{d}^{2}\right)\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=2\left(\gamma^{2}-\mathrm{x}_{\mathrm{m}} \mathrm{d}\right) \mathrm{T}_{\mathrm{m}}$

