Appendix R to:

A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (9), (13), (16)

Derivation of the travel time relation equation for displacement

Considering the two photon trajectories of equation (13), from $\vec{\sigma}$ at time T_1 to \vec{r}_m at time T_m and back from \vec{r}_m at time T_m to $\vec{\sigma}$ at time T_2 , and inserting these into the equation for the photon path, equation (9), results in:

(R.1) $(\vec{\gamma}_{m} - \vec{r}_{m}) T_{m} = (\vec{\gamma}_{m} - \vec{d}) T_{1}$ $(\vec{\gamma}_{d} - \vec{r}_{m}) T_{m} = (\vec{\gamma}_{d} - \vec{d}) T_{2}$

where $\vec{\gamma}_m$ and $\vec{\gamma}_d$ are the respective limit locations of the photons. Both equations can be combined into an equation for the summed times $T_1 + T_2$:

 $(R.2) \qquad (\vec{\gamma}_{m} - \vec{d}) \bullet (\vec{\gamma}_{d} - \vec{d}) (T_{1} + T_{2}) = \{ (\vec{\gamma}_{m} - \vec{r}_{m}) \bullet (\vec{\gamma}_{d} - \vec{d}) + (\vec{\gamma}_{m} - \vec{d}) \bullet (\vec{\gamma}_{d} - \vec{r}_{m}) \} T_{m}$

where • denotes the vector inner product. The situation of equation (R.1) is schematically given in the figure at the right. $\vec{\gamma}_d$, \vec{d} , \vec{r}_m and $\vec{\gamma}_m$ are on the same trajectory, the part between \vec{d} and \vec{r}_m travelled forth and back respectively by either photon. Perpendicular to that, a construction line \vec{a} is drawn: $\vec{a} = \frac{1}{2}(\vec{\gamma}_d + \vec{\gamma}_m)$, and the distance to \vec{d} is indicated as \vec{b} : $\vec{b} = \vec{d} - \vec{a}$. Since the triangle formed by $\vec{\gamma}_d$, $\vec{\gamma}_m$ is isosceles (both these sidelines have a length γ) $\vec{\gamma}_d - \vec{a} = \vec{a} - \vec{\gamma}_m$ where their length is $\sqrt{\gamma^2 - a^2}$. Then, for the left-hand part of equation (R.2) – note, that $\vec{d} = \vec{a} + \vec{b}$:

 $(\mathbf{R.3}) \qquad (\overrightarrow{\gamma}_{m} - \overrightarrow{a}) \bullet (\overrightarrow{\gamma}_{d} - \overrightarrow{a}) = (\overrightarrow{\gamma}_{m} - \overrightarrow{a} - \overrightarrow{b}) \bullet (\overrightarrow{\gamma}_{d} - \overrightarrow{a} - \overrightarrow{b})$ $= (\overrightarrow{\gamma}_{m} - \overrightarrow{a}) \bullet (\overrightarrow{\gamma}_{d} - \overrightarrow{a}) - (\overrightarrow{\gamma}_{m} + \overrightarrow{\gamma}_{d} - 2 \overrightarrow{a}) \bullet \overrightarrow{b} + b^{2}$ $= -(\gamma^{2} - a^{2}) + 0 + b^{2}$ $= -(\gamma^{2} - d^{2})$

And for the right-hand part of equation (R.2):

$$(\mathbf{R}.4) \qquad (\vec{\gamma}_{m} - \vec{d}) \bullet (\vec{\gamma}_{d} - \vec{r}_{m}) + (\vec{\gamma}_{m} - \vec{r}_{m}) \bullet (\vec{\gamma}_{d} - \vec{d}) \\ = (\vec{\gamma}_{m} - \vec{d}) \bullet \{ \vec{\gamma}_{d} - \vec{d} + (\vec{d} - \vec{r}_{m}) \} + \{ \vec{\gamma}_{m} - \vec{d} + (\vec{d} - \vec{r}_{m}) \} \bullet (\vec{\gamma}_{d} - \vec{d}) \\ = 2 (\vec{\gamma}_{m} - \vec{d}) \bullet (\vec{\gamma}_{d} - \vec{d}) + (\vec{\gamma}_{m} + \vec{\gamma}_{d}) \bullet (\vec{d} - \vec{r}_{m}) - 2 \vec{d} \bullet (\vec{d} - \vec{r}_{m})$$

However, $\vec{\gamma}_m + \vec{\gamma}_d = 2 \vec{a}$ is perpendicular to $\vec{d} - \vec{r}_m$ so that their inner product is zero. Then, also using the first result, we derive:

 $(\mathbf{R.5}) \quad (\vec{\gamma}_{m} - \vec{\mathbf{d}}) \bullet (\vec{\gamma}_{d} - \vec{\mathbf{r}}_{m}) + (\vec{\gamma}_{m} - \vec{\mathbf{r}}_{m}) \bullet (\vec{\gamma}_{d} - \vec{\mathbf{d}})$ $= -2 (\gamma^{2} - d^{2}) + 0 - 2 d^{2} + 2 \vec{\mathbf{d}} \bullet \vec{\mathbf{r}}_{m}$ $= -2 (\gamma^{2} - \vec{\mathbf{d}} \bullet \vec{\mathbf{r}}_{m})$ $= -2 (\gamma^{2} - \mathbf{x}_{m} d)$

so that equation (R.2) becomes:

(16) $(\gamma^2 - d^2) (T_1 + T_2) = 2 (\gamma^2 - x_m d) T_m$

