Appendix M to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (29), (31), (34)
Derivation of the function Θ () for force-free moving system transformation
Equation (29):
(29) $\frac{1}{\Theta\left(T_{\text {or }}, \mathrm{V}_{\text {or }} ; \mathrm{d}_{\mathrm{x}}, 0\right)} \frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{T}_{\text {or }}, \mathrm{V}_{\text {or }} ; \mathrm{d}_{\mathrm{x}}, 0\right)=-\frac{\mathrm{d}_{\mathrm{x}}+\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\left(\mathrm{d}_{\mathrm{x}}\right)\right) \mathrm{T}_{\mathrm{x}}\left(\mathrm{d}_{\mathrm{x}}\right)}{\gamma^{2}-\mathrm{d}_{\mathrm{x}}\left\{\mathrm{d}_{\mathrm{x}}+\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\left(\mathrm{d}_{\mathrm{x}}\right)\right) \mathrm{T}_{\mathrm{x}}\left(\mathrm{d}_{\mathrm{x}}\right)\right\}}$
is general for any moving system but will be worked out specifically for the situation of a force-free movement; adapted from equation (34):
(M.1) $\quad d_{x}=d\left(T_{x}\right)=v_{\text {or }} T_{\text {or }}\left(1-\frac{T_{\text {or }}}{T_{x}}\right)$
and its first derivative:
(M.2) $\quad v\left(T_{x}\right)=\left(\frac{d}{d T} d\right)\left(T_{x}\right)=v_{\text {or }} T_{\text {or }} \frac{T_{\text {or }}}{T_{x}{ }^{2}}$

It is easily seen that:
(M.3) $\quad d_{x}+v\left(T_{x}\right) T_{x}=v_{\text {or }} T_{\text {or }}$

This result goes into equation (29):
(M.4) $\frac{1}{\Theta\left(T_{\text {or }}, V_{\text {or }} ; \mathrm{d}_{\mathrm{x}}, 0\right)} \frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{T}_{\text {or }}, \mathrm{V}_{\mathrm{or}} ; \mathrm{d}_{\mathrm{x}}, 0\right)=-\frac{\mathrm{V}_{\text {or }} \mathrm{T}_{\text {or }}}{\gamma^{2}-\mathrm{d}_{\mathrm{x}} \mathrm{V}_{\text {or }} \mathrm{T}_{\text {or }}}$
which is straightforwardly solved as:
(31) $\Theta\left(\mathrm{T}_{\mathrm{or}}, \mathrm{V}_{\mathrm{or}} ; \mathrm{d}_{\mathrm{x}}, 0\right)=\Theta\left(\mathrm{T}_{\mathrm{or}}, \mathrm{V}_{\mathrm{or}} ; 0,0\right)\left(1-\frac{\mathrm{d}_{\mathrm{x}} \mathrm{V}_{\mathrm{or}} \mathrm{T}_{\mathrm{or}}}{\gamma^{2}}\right)$

