Appendix F to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (9), (14), (27), (28)

Derivation of the basic equation for $\Theta()$ for moving systems transformations

A system is considered moving in the x -direction:
(F.1) $\quad \mathbf{d}=\left(\begin{array}{c}d(T) \\ 0 \\ 0\end{array}\right)$
and a photon travelling from the system's origin at time T_{1} forward to a location x_{m} also on the x -axis and reached at time T_{x} then mirrored back towards the system's origin reached at time T_{2} :

$$
\begin{array}{ll}
\mathrm{x}_{\mathrm{ph}}\left(\mathrm{~T}_{1}\right)=\mathrm{d}\left(\mathrm{~T}_{1}\right) & \mathrm{x}_{\mathrm{ph}}^{*}\left(\mathrm{~T}_{1}^{*}\right)=0 \\
\mathrm{x}_{\mathrm{ph}}\left(\mathrm{~T}_{\mathrm{x}}\right)=\mathrm{x}_{\mathrm{m}} & \mathrm{x}_{\mathrm{ph}}^{*}\left(\mathrm{~T}_{\mathrm{x}}^{*}\right)=\mathrm{x}_{\mathrm{m}}^{*} \tag{F.2}\\
\mathrm{x}_{\mathrm{ph}}\left(\mathrm{~T}_{2}\right)=\mathrm{d}\left(\mathrm{~T}_{2}\right) & \mathrm{x}_{\mathrm{ph}}^{*}\left(\mathrm{~T}_{2}^{*}\right)=0
\end{array}
$$

The photon's path is described by equation (9):

$$
\begin{array}{ll}
\mathrm{xT}=\mathrm{d}\left(\mathrm{~T}_{1}\right) \mathrm{T}_{1}+\gamma\left(\mathrm{T}-\mathrm{T}_{1}\right) & \mathrm{T} \leq \mathrm{T}_{\mathrm{x}} \\
\mathrm{xT}=\mathrm{d}\left(\mathrm{~T}_{2}\right) \mathrm{T}_{2}-\gamma\left(\mathrm{T}-\mathrm{T}_{2}\right) & \mathrm{T} \geq \mathrm{T}_{\mathrm{x}} \tag{F.3}
\end{array}
$$

where x is the photon's location at time T . Again, for the transformed system equation (14) is valid:
(14) $2 \mathrm{~T}_{\mathrm{x}}^{*}=\mathrm{T}_{1}^{*}+\mathrm{T}_{2}^{*}$
and hence, from equation (27):
(F.4) $\quad 2 \Theta\left(T_{\text {or }}, \mathrm{V}_{\text {or }} ; \mathrm{x}_{\mathrm{m}}, 0\right) \mathrm{T}_{\mathrm{x}}=\Theta\left(\mathrm{T}_{\mathrm{or},}, \mathrm{V}_{\mathrm{or}} ; \mathrm{d}\left(\mathrm{T}_{1}\right), 0\right) \mathrm{T}_{1}+\Theta\left(\mathrm{T}_{\mathrm{or}}, \mathrm{V}_{\mathrm{or}} ; \mathrm{d}\left(\mathrm{T}_{2}\right), 0\right) \mathrm{T}_{2}$

Now, we consider $T=T_{x}$ in equation (F.3) and make substitutions $T_{1}=T_{x}-\delta T_{1}, T_{2}=T_{x}+\delta T_{2}, v(T)=\frac{d}{d T} d(T)$ where $\delta \mathrm{T}_{1}, \delta \mathrm{~T}_{2}$ are infinitesimally small:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{m}} \mathrm{~T}_{\mathrm{x}}=\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}+\left\{\gamma-\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right)-\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}\right\} \delta \mathrm{T}_{1} \\
& \mathrm{x}_{\mathrm{m}} \mathrm{~T}_{\mathrm{x}}=\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}+\left\{\gamma+\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right)+\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}\right\} \delta \mathrm{T}_{2} \tag{F.5}
\end{align*}
$$

so that, defining

$$
\begin{equation*}
\varepsilon=\mathrm{x}_{\mathrm{m}}-\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right) \tag{F.6}
\end{equation*}
$$

we can write $\delta \mathrm{T}_{1}, \delta \mathrm{~T}_{2}$ as:
(F.7) $\quad \delta \mathrm{T}_{1}=\frac{\varepsilon \mathrm{T}_{\mathrm{x}}}{\gamma-\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right)-\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}} \quad \delta \mathrm{T}_{2}=\frac{\varepsilon \mathrm{T}_{\mathrm{x}}}{\gamma+\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right)+\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}}$

Then, equation (F.4) can be worked out as - leaving out the parameters $\mathrm{T}_{\text {or }}$, $\mathrm{v}_{\text {or }}$ for better readability:

$$
\begin{align*}
& 2\left\{\Theta\left(\mathrm{~d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)+\varepsilon \frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{~d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)\right\} \mathrm{T}_{\mathrm{x}}=\Theta\left(\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right) \mathrm{T}_{\mathrm{x}}-\left\{\Theta\left(\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)+\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}} \frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{~d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)\right\} \frac{\varepsilon \mathrm{T}_{\mathrm{x}}}{\gamma-\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right)-\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}} \tag{F.8}\\
& \quad+\Theta\left(\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right) \mathrm{T}_{\mathrm{x}}+\left\{\Theta\left(\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)+\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}} \frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{~d}\left(\mathrm{~T}_{\mathrm{x}}\right), 0\right)\right\} \frac{\varepsilon \mathrm{T}_{\mathrm{x}}}{\gamma+\mathrm{d}\left(\mathrm{~T}_{\mathrm{x}}\right)+\mathrm{v}\left(\mathrm{~T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}}
\end{align*}
$$

which after some rearrangement yields:
(F.9) $\frac{\partial \Theta}{\partial \mathrm{x}}\left(\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right), 0\right)\left[\gamma^{2}-\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right)\left\{\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right)+\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}\right\}\right]=-\left\{\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right)+\mathrm{v}\left(\mathrm{T}_{\mathrm{x}}\right) \mathrm{T}_{\mathrm{x}}\right\} \Theta\left(\mathrm{d}\left(\mathrm{T}_{\mathrm{x}}\right), 0\right)$
which in fact is a differential equation in $\Theta()$ as soon as the relation between $d()$ and T_{x} is established. Equation (28) is the above equation where the parameters $\mathrm{T}_{\text {or }}, \mathrm{V}_{\text {or }}$ are shown also.

