Appendix D to:

A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (17), (18), (19), (B.19), (B.20)

Derivation of the space transformations for displacement

A coordinate transformation is considered over a constant distance $\vec{\sigma}$ in the x-direction:

$$(\mathbf{D}.1) \qquad \vec{\mathbf{d}} = \begin{pmatrix} \mathbf{d} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

and for the vectors \vec{s} and \vec{r} , photon direction μ and transformation functions X() and Y() in polar coordinates as in Appendix B. For displacement d, the time transformation was proven to be:

(17)
$$T^*(d;x,y,T) = \Theta_d (\gamma^2 - x d) T - \Delta t_d$$

which is inserted into equation (B.19) where $x = s \cos(\sigma)$:

(D.2)
$$Y(s,\sigma,T_s) = C_d s \sin(\sigma) \frac{T_s}{T_s^*} = \frac{C_d s \sin(\sigma) T_s}{\Theta_d \{\gamma^2 - s d \cos(\sigma)\} T_s - \Delta t_d}$$

In the limit for $|T_s| \rightarrow \infty$, $s \rightarrow \gamma$, $\sigma \rightarrow \mu$ this becomes:

(D.3)
$$Y(\gamma,\mu,\infty) = \frac{C_d \sin(\mu)}{\Theta_d \{\gamma - d \cos(\mu)\}}$$

and that value will have a maximum of γ reached for a μ_0 for which $dY/d\mu = 0$:

(D.4)
$$0 = \frac{\cos(\mu_0)}{\gamma - d\cos(\mu_0)} - \frac{d\sin(\mu_0)^2}{\{\gamma - d\cos(\mu_0)\}^2}$$

where the constants C_d , Θ_d have been left out; the solution for μ_0 is:

(D.5)
$$\cos(\mu_0) = \frac{d}{\gamma} \longrightarrow \sin(\mu_0) = \sqrt{1 - \frac{d^2}{\gamma^2}}$$

so that (the solution for the sinus is positive since Y() is maximal so positive), from equation (D.3):

(D.6)
$$\gamma = \frac{C_{\rm d}\sqrt{1-d^2/\gamma^2}}{\Theta_{\rm d}(\gamma-d^2/\gamma)}$$

which implies that C_d can be expressed in terms of Θ_d :

(D.7)
$$C_d = \Theta_d \gamma \sqrt{\gamma^2 - d^2}$$

and the solution for Y(), equation (D.2), becomes – now written in terms of r, α :

(D.8)
$$Y(r,\alpha,T_r) = \frac{\gamma \sqrt{\gamma^2 - d^2 r \sin(\alpha) T_r}}{\{\gamma^2 - r d \cos(\alpha)\} T_r - \Delta t_d / \Theta_d}$$

which is, in Cartesian coordinates replacing T_r by T and in the notation including the parameter d:

(19)
$$y^*(d;x,y,T) = \frac{\gamma \sqrt{\gamma^2 - d^2 y T}}{(\gamma^2 - x d) T - \Delta t_d / \Theta_d}$$

In the limit for $|T_r| \rightarrow \infty$, $r \rightarrow \gamma$, $\alpha \rightarrow \mu$:

(D.9)
$$Y(\gamma,\mu,\infty) = \frac{\gamma \sqrt{\gamma^2 - d^2} \sin(\mu)}{\gamma - d\cos(\mu)}$$

For the x-components, it was shown in Appendix B that:

(B.20) $X(r,\alpha,T_r) T_r^* = X(\gamma,\mu,\infty) (T_r^* - T_s^*) + X(s,\sigma,T_s) T_s^*$

The special case $\vec{s} = \vec{d}$, $T_s = T_d$ is considered since in that case the full right-hand side is known. Firstly, $X(d,0,T_d) = 0$ since the transformed coordinate is the new origin. Secondly, $X(\gamma,\mu,\infty)$ is known since $X(\gamma,\mu,\infty)^2 + Y(\gamma,\mu,\infty)^2$ has to be equal to γ^2 so that from equation (D.9):

(D.10)
$$X(\gamma,\mu,\infty) = \pm \sqrt{\gamma^2 - \frac{\gamma^2 (\gamma^2 - d^2) \sin(\mu)^2}{\{\gamma - d\cos(\mu)\}^2}} = + \frac{\gamma \{\gamma \cos(\mu) - d\}}{\gamma - d\cos(\mu)}$$

See below why the + sign pertains. Inserting into equation (B.20), together with equation (17) where $x = r \cos(\alpha)$ and for $\vec{s} = \vec{d}$, $T_s = T_d$ in the right-hand side:

(D.11)
$$X(r,\alpha,T_r) T_r^* = \frac{\gamma \{\gamma \cos(\mu) - d\}}{\gamma - d\cos(\mu)} \left(\Theta_d \{\gamma^2 - r d\cos(\alpha)\} T_r - \Delta t_d - \{\Theta_d (\gamma^2 - d^2) T_d - \Delta t_d\} \right)$$

Appendices

where T_r and T_d are connected through a photon path $(\vec{\gamma} - \vec{r}) T_r = (\vec{\gamma} - \vec{d}) T_d$. Taking the x-components of this path equation gives:

(D.12) { $\gamma \cos(\mu) - r\cos(\alpha)$ } $T_r = {\gamma \cos(\mu) - d} T_d$

and inserting the resulting T_d in the above equation for $X(r,\alpha,T_r)$:

(D.13)
$$X(r,\alpha,T_r) T_r^* = \frac{\gamma \Theta_d T_r}{\gamma - d\cos(\mu)} \left\{ \left\{ \gamma \cos(\mu) - d \right\} \left\{ \gamma^2 - r d\cos(\alpha) \right\} - \left\{ \gamma \cos(\mu) - r \cos(\alpha) \right\} (\gamma^2 - d^2) \right\} \\ = \gamma^2 \Theta_d \left\{ r \cos(\alpha) - d \right\} T_r$$

so that, replacing T_r by T and again applying equation (17):

(D.14)
$$X(r,\alpha,T) = \frac{\gamma^2 \{ r \cos(\alpha) - d \} T}{\{ \gamma^2 - r d \cos(\alpha) \} T - \Delta t_d / \Theta}$$

In Cartesian coordinates and in the notation including the parameter d:

(18)
$$x^*(d;x,y,T) = \frac{\gamma^2 (x-d) T}{(\gamma^2 - x d) T - \Delta t_d / \Theta_d}$$

Additional consideration

Since only a displacement is considered, no rotation, the photon's limit locations will be in the same direction in both the original and transformed system. For positive T_0 , this is $x^* = x = +\gamma$ for $T \to \infty$ and for negative T_0 $x^* = x = -\gamma$ for $T \to -\infty$. Both cases are consistent with equation (18) so a +-sign in equation (D.10).

The equations for X(r, α ,T), Y(r, α ,T), T^{*}(T,r, α) have been derived using special cases like $|T| \rightarrow \infty$ and $\vec{s} = \vec{d}$ but should be checked for general validity. Concerning the x-components, equation (B.20) can be written as, substituting $\gamma \cos(\mu^*)$ for X(γ,μ,∞):

(D.15) $\gamma \cos(\mu^*) T_r^* - X(r, \alpha, T_r) T_r^* = \gamma \cos(\mu^*) T_s^* - X(s, \sigma, T_s) T_s^*$

and, with X(), T^{*}() substituted and both sides divided by Θ_d :

(D.16) $[\gamma \cos(\mu^*) \{\gamma^2 - r d \cos(\alpha)\} - \gamma^2 \{r \cos(\alpha) - d\}] T_r = [\gamma \cos(\mu^*) \{\gamma^2 - s d \cos(\sigma)\} - \gamma^2 \{s \cos(\sigma) - d\}] T_s$ Combined with the same photon path equation but now for the untransformed system:

(D.17) $[\gamma \cos(\mu) - r \cos(\alpha)] T_r = [\gamma \cos(\mu) - s \cos(\sigma)] T_s$

the times T_r, T_s can be eliminated:

(D.18)
$$[\gamma \cos(\mu^*) \{\gamma^2 - r d \cos(\alpha)\} - \gamma^2 \{r \cos(\alpha) - d\}] [\gamma \cos(\mu) - s \cos(\sigma)] = [\gamma \cos(\mu^*) \{\gamma^2 - s d \cos(\sigma)\} - \gamma^2 \{s \cos(\sigma) - d\}] [\gamma \cos(\mu) - r \cos(\alpha)]$$

which, after some reshuffling, can be simplified to:

(D.19)
$$\cos(\mu^*) = \frac{\gamma \cos(\mu) - d}{\gamma - d \cos(\mu)}$$

independent of any \vec{r} , \vec{s} , T_r , T_s so generally valid indeed. The corresponding treatment for Y() leads to the equivalent equation:

(D.20) $\sin(\mu^*) = \frac{\sqrt{\gamma^2 - d^2} \sin(\mu)}{\gamma - d\cos(\mu)}$