Appendix D to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (17), (18), (19), (B.19), (B.20)

Derivation of the space transformations for displacement

A coordinate transformation is considered over a constant distance \mathbb{d} in the x -direction:
(D.1) $\quad \overrightarrow{\mathrm{d}}=\left(\begin{array}{l}\mathrm{d} \\ 0 \\ 0\end{array}\right)$
and for the vectors \vec{s} and \vec{r}, photon direction μ and transformation functions $X()$ and $Y()$ in polar coordinates as in Appendix B. For displacement d, the time transformation was proven to be:
(17) $\mathrm{T}^{*}(\mathrm{~d} ; \mathrm{x}, \mathrm{y}, \mathrm{T})=\Theta_{\mathrm{d}}\left(\gamma^{2}-\mathrm{xd}\right) \mathrm{T}-\Delta \mathrm{t}_{\mathrm{d}}$
which is inserted into equation (B.19) where $\mathrm{x}=\mathrm{s} \cos (\sigma)$:
(D.2)

$$
\mathrm{Y}\left(\mathrm{~s}, \sigma, \mathrm{~T}_{\mathrm{s}}\right)=\mathrm{C}_{\mathrm{d}} \mathrm{~S} \sin (\sigma) \frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{~T}_{\mathrm{s}}^{*}}=\frac{\mathrm{C}_{\mathrm{d}} \mathrm{~s} \sin (\sigma) \mathrm{T}_{\mathrm{s}}}{\Theta_{\mathrm{d}}\left\{\gamma^{2}-\mathrm{sd} \cos (\sigma)\right\} \mathrm{T}_{\mathrm{s}}-\Delta \mathrm{t}_{\mathrm{d}}}
$$

In the limit for $\left|\mathrm{T}_{\mathrm{s}}\right| \rightarrow \infty, \mathrm{s} \rightarrow \gamma, \sigma \rightarrow \mu$ this becomes:
(D.3) $\quad \mathrm{Y}(\gamma, \mu, \infty)=\frac{\mathrm{C}_{\mathrm{d}} \sin (\mu)}{\Theta_{\mathrm{d}}\{\gamma-\mathrm{d} \cos (\mu)\}}$
and that value will have a maximum of γ reached for a μ_{0} for which $\mathrm{dY} / \mathrm{d} \mu=0$:
(D.4) $0=\frac{\cos \left(\mu_{0}\right)}{\gamma-\mathrm{d} \cos \left(\mu_{0}\right)}-\frac{\mathrm{d} \sin \left(\mu_{0}\right)^{2}}{\left\{\gamma-\mathrm{d} \cos \left(\mu_{0}\right)\right\}^{2}}$
where the constants C_{d}, Θ_{d} have been left out; the solution for μ_{0} is:
(D.5) $\quad \cos \left(\mu_{0}\right)=\frac{\mathrm{d}}{\gamma} \quad \rightarrow \quad \sin \left(\mu_{0}\right)=\sqrt{1-\frac{\mathrm{d}^{2}}{\gamma^{2}}}$
so that (the solution for the sinus is positive since $\mathrm{Y}($) is maximal so positive), from equation (D.3):
(D.6) $\quad \gamma=\frac{\mathrm{C}_{\mathrm{d}} \sqrt{1-\mathrm{d}^{2} / \gamma^{2}}}{\Theta_{\mathrm{d}}\left(\gamma-\mathrm{d}^{2} / \gamma\right)}$
which implies that C_{d} can be expressed in terms of Θ_{d} :
(D.7) $\quad \mathrm{C}_{\mathrm{d}}=\Theta_{\mathrm{d}} \gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}}$
and the solution for $\mathrm{Y}($), equation (D.2), becomes - now written in terms of r, α :
(D.8) $\quad \mathrm{Y}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right)=\frac{\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}} \mathrm{r} \sin (\alpha) \mathrm{T}_{\mathrm{r}}}{\left\{\gamma^{2}-\mathrm{rd} \mathrm{\cos (} \mathrm{\alpha)} \mathrm{\} T}_{\mathrm{r}}-\Delta \mathrm{t}_{\mathrm{d}} / \Theta_{\mathrm{d}}\right.}$
which is, in Cartesian coordinates replacing T_{r} by T and in the notation including the parameter d :
(19)
$\mathrm{y}^{*}(\mathrm{~d} ; \mathrm{x}, \mathrm{y}, \mathrm{T})=\frac{\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}} \mathrm{y} \mathrm{T}}{\left(\gamma^{2}-\mathrm{xd}\right) \mathrm{T}-\Delta \mathrm{t}_{\mathrm{d}} / \Theta_{\mathrm{d}}}$
In the limit for $\left|\mathrm{T}_{\mathrm{r}}\right| \rightarrow \infty, \mathrm{r} \rightarrow \gamma, \alpha \rightarrow \mu$:
(D.9) $\quad \mathrm{Y}(\gamma, \mu, \infty)=\frac{\gamma \sqrt{\gamma^{2}-\mathrm{d}^{2}} \sin (\mu)}{\gamma-\mathrm{d} \cos (\mu)}$

For the x -components, it was shown in Appendix B that:
(B.20) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\mathrm{X}(\gamma, \mu, \infty)\left(\mathrm{T}_{\mathrm{r}}^{*}-\mathrm{T}_{\mathrm{s}}^{*}\right)+\mathrm{X}\left(\mathrm{s}, \sigma, \mathrm{T}_{\mathrm{s}}\right) \mathrm{T}_{s}^{*}$

The special case $\overrightarrow{\mathrm{s}}=\mathrm{d}, \mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{d}}$ is considered since in that case the full right-hand side is known. Firstly, $\mathrm{X}\left(\mathrm{d}, 0, \mathrm{~T}_{\mathrm{d}}\right)=0$ since the transformed coordinate is the new origin. Secondly, $\mathrm{X}(\gamma, \mu, \infty)$ is known since $\mathrm{X}(\gamma, \mu, \infty)^{2}+\mathrm{Y}(\gamma, \mu, \infty)^{2}$ has to be equal to γ^{2} so that from equation (D.9):

$$
\begin{equation*}
\mathrm{X}(\gamma, \mu, \infty)= \pm \sqrt{\gamma^{2}-\frac{\gamma^{2}\left(\gamma^{2}-\mathrm{d}^{2}\right) \sin (\mu)^{2}}{\{\gamma-\mathrm{d} \cos (\mu)\}^{2}}}=+\frac{\gamma\{\gamma \cos (\mu)-\mathrm{d}\}}{\gamma-\mathrm{d} \cos (\mu)} \tag{D.10}
\end{equation*}
$$

See below why the + sign pertains. Inserting into equation (B.20), together with equation (17) where $\mathrm{x}=\mathrm{r} \cos (\alpha)$ and for $\overrightarrow{\mathrm{s}}=\mathrm{d}, \mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{d}}$ in the right-hand side:
(D.11) $\quad \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\frac{\gamma\{\gamma \cos (\mu)-\mathrm{d}\}}{\gamma-\mathrm{d} \cos (\mu)}\left(\Theta_{\mathrm{d}}\left\{\gamma^{2}-\mathrm{rd} \cos (\alpha)\right\} \mathrm{T}_{\mathrm{r}}-\Delta \mathrm{t}_{\mathrm{d}}-\left\{\Theta_{\mathrm{d}}\left(\gamma^{2}-\mathrm{d}^{2}\right) \mathrm{T}_{\mathrm{d}}-\Delta \mathrm{t}_{\mathrm{d}}\right\}\right)$
where T_{r} and T_{d} are connected through a photon path $(\vec{\gamma}-\overrightarrow{\mathrm{r}}) \mathrm{T}_{\mathrm{r}}=(\vec{\gamma}-\mathrm{d}) \mathrm{T}_{\mathrm{d}}$. Taking the x -components of this path equation gives:
(D.12) $\quad\{\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)\} \mathrm{T}_{\mathrm{r}}=\{\gamma \cos (\mu)-\mathrm{d}\} \mathrm{T}_{\mathrm{d}}$
and inserting the resulting T_{d} in the above equation for $\mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right)$:
(D.13)

$$
\begin{aligned}
& \mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{~T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\frac{\gamma \Theta_{\mathrm{d}} \mathrm{~T}_{\mathrm{r}}}{\gamma-\mathrm{d} \cos (\mu)}\left(\{\gamma \cos (\mu)-\mathrm{d}\}\left\{\gamma^{2}-\mathrm{rd} \cos (\alpha)\right\}-\{\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)\}\left(\gamma^{2}-\mathrm{d}^{2}\right)\right) \\
& \quad=\gamma^{2} \Theta_{\mathrm{d}}\{\mathrm{r} \cos (\alpha)-\mathrm{d}\} \mathrm{T}_{\mathrm{r}}
\end{aligned}
$$

so that, replacing T_{r} by T and again applying equation (17):
(D.14) $\quad X(r, \alpha, T)=\frac{\gamma^{2}\{r \cos (\alpha)-d\} T}{\left\{\gamma^{2}-r d \cos (\alpha)\right\} T-\Delta \mathrm{t}_{\mathrm{d}} / \Theta_{\mathrm{d}}}$

In Cartesian coordinates and in the notation including the parameter d :
(18) $\mathrm{x}^{*}(\mathrm{~d} ; \mathrm{x}, \mathrm{y}, \mathrm{T})=\frac{\gamma^{2}(\mathrm{x}-\mathrm{d}) \mathrm{T}}{\left(\gamma^{2}-\mathrm{xd}\right) \mathrm{T}-\Delta \mathrm{t}_{\mathrm{d}} / \Theta_{\mathrm{d}}}$

Additional consideration

Since only a displacement is considered, no rotation, the photon's limit locations will be in the same direction in both the original and transformed system. For positive T_{0}, this is $x^{*}=x=+\gamma$ for $T \rightarrow \infty$ and for negative $T_{0} x^{*}=x=-\gamma$ for $\mathrm{T} \rightarrow-\infty$. Both cases are consistent with equation (18) so a +- sign in equation (D.10).

The equations for $X(r, \alpha, T), Y(r, \alpha, T), T^{*}(T, r, \alpha)$ have been derived using special cases like $|T| \rightarrow \infty$ and $\vec{s}=\mathbb{d}$ but should be checked for general validity. Concerning the x -components, equation (B.20) can be written as, substituting $\gamma \cos \left(\mu^{*}\right)$ for $\mathrm{X}(\gamma, \mu, \infty)$:
(D.15) $\quad \gamma \cos \left(\mu^{*}\right) \mathrm{T}_{\mathrm{r}}^{*}-\mathrm{X}\left(\mathrm{r}, \alpha, \mathrm{T}_{\mathrm{r}}\right) \mathrm{T}_{\mathrm{r}}^{*}=\gamma \cos \left(\mu^{*}\right) \mathrm{T}_{\mathrm{s}}^{*}-\mathrm{X}\left(\mathrm{s}, \sigma, \mathrm{T}_{\mathrm{s}}\right) \mathrm{T}_{\mathrm{s}}^{*}$
and, with X()$, \mathrm{T}^{*}()$ substituted and both sides divided by Θ_{d} :
(D.16) $\left[\gamma \cos \left(\mu^{*}\right)\left\{\gamma^{2}-\mathrm{rd} \cos (\alpha)\right\}-\gamma^{2}\{\mathrm{r} \cos (\alpha)-\mathrm{d}\}\right] \mathrm{T}_{\mathrm{r}}=\left[\gamma \cos \left(\mu^{*}\right)\left\{\gamma^{2}-\mathrm{sd} \cos (\sigma)\right\}-\gamma^{2}\{\mathrm{~s} \cos (\sigma)-\mathrm{d}\}\right] \mathrm{T}_{\mathrm{s}}$

Combined with the same photon path equation but now for the untransformed system:
(D.17) $\quad[\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)] \mathrm{T}_{\mathrm{r}}=[\gamma \cos (\mu)-\mathrm{s} \cos (\sigma)] \mathrm{T}_{\mathrm{s}}$ the times $\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{s}}$ can be eliminated:
(D.18) $\quad\left[\gamma \cos \left(\mu^{*}\right)\left\{\gamma^{2}-\mathrm{rd} \cos (\alpha)\right\}-\gamma^{2}\{\mathrm{r} \cos (\alpha)-\mathrm{d}\}\right][\gamma \cos (\mu)-\mathrm{s} \cos (\sigma)]=$ $\left[\gamma \cos \left(\mu^{*}\right)\left\{\gamma^{2}-\mathrm{sd} \cos (\sigma)\right\}-\gamma^{2}\{\mathrm{~s} \cos (\sigma)-\mathrm{d}\}\right][\gamma \cos (\mu)-\mathrm{r} \cos (\alpha)]$
which, after some reshuffling, can be simplified to:
(D.19) $\quad \cos \left(\mu^{*}\right)=\frac{\gamma \cos (\mu)-d}{\gamma-d \cos (\mu)}$
independent of any $\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{s}}, \mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{s}}$ so generally valid indeed. The corresponding treatment for Y() leads to the equivalent equation:
(D.20) $\quad \sin \left(\mu^{*}\right)=\frac{\sqrt{\gamma^{2}-\mathrm{d}^{2}} \sin (\mu)}{\gamma-\mathrm{d} \cos (\mu)}$

