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 Appendices  

Appendix C to: 
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first 
Consequences for Long-distance Physics.  
 Referred equations:  (4), (5) 

Derivation of the basic equations for light velocity. 

Starting point of these derivations is the equality: 

(4) Ψ(r→,t + ∆t) ≡ Ψ( r→ −c→( r→,t) ∆t,t) 

The  nth derivative to  ∆t  is: 

(C.1)  
∂nΨ

∂tn ( r→,t + ∆t) ≡ (−c→( r→,t)•˾ )͟n ͟Ψ( r→ −c→( r→,t) ∆t,t) 

where, as indicated, the operator    operates on  Ψ  only and not on  c→. In the limit for  ∆t → 0: 

(C.2)  
∂nΨ

∂tn  ≡ (−c→•˾ )͟n ͟Ψ 

where both  c→  and  Ψ  are dependent on  ( r→,t). For reasons of readability, this is from here on no longer written explicitly. 

The second derivative to  t  also can be derived by differentiating the  n=1  case of equation (C.2) to  t: 

(C.3)  
∂2Ψ

∂t2  =  
∂

∂t



∂Ψ

∂t
 = 

∂

∂t
( )−c→•˾  ͟Ψ  = −

∂c→

∂t
•˾  ͟Ψ − c→•˾  ͟



∂Ψ

 ∂t
 = −

∂c→

∂t
•˾  ͟Ψ − c→•˾  ͟( )−c→•˾ ͟Ψ  

   = −
∂c→

∂t
•˾  ͟Ψ + (c→•˾ ) ͟c→•˾  ͟Ψ + (c→•˾ )͟2 ͟Ψ 

Combination with the  n=2  case of equation (C.2) shows that: 

(C.4)  
∂c→

∂t
 = (c→•˾ ) ͟c→ 

which is the top of equation (5). Similarly, for the third derivative: 

(C.5)  
∂3Ψ

∂t3  = 
∂

∂t



∂2Ψ

∂t2  = 
∂

∂t
( )(c→•˾ )͟2 ͟Ψ  = 2





∂c→

∂t
•˾  ͟( c ͟ →•˾ ) ͟Ψ + (c→•˾ )͟2 ͟



∂Ψ

∂t
 = 2





∂c→

∂t
•˾  ͟( c  ͟→•˾ ) ͟Ψ + (c→•˾ )͟2 ͟( )−c→•˾ ͟Ψ  

   = 2




∂c→

∂t
•˾  ͟( c ͟ →•˾ ) ͟Ψ − (c→•˾ )͟2 ͟c→•˾ ͟Ψ − 2{ }( )(c→•˾ ) ͟c→ •˾  ͟( c  ͟→•˾ ) ͟Ψ − (c→•˾ )͟3 ͟Ψ 

so that, according to equation (C.4): 

(C.6)  
∂3Ψ

∂t3  = −(c→•˾ )͟2 ͟c→•˾ ͟Ψ − (c→•˾ )͟3 ͟Ψ 

Combination with the  n=3  case of equation (C.2) shows that: 

(C.7)  (c→•˾ )͟2 c→ = 0 

which is the bottom of equation (5). 

It still has to be shown, that the different ways of deriving  ∂nΨ/∂tn  are equivalent also for  n>3. Assuming that to be true 

up to and including a given value of  n, we derive for the  n+1  case, keeping in mind equation (C.7): 

(C.8)  
∂n+1Ψ

∂tn+1  = 
∂

∂t



∂nΨ

∂tn  = 
∂

∂t
( )(−c→•˾ )͟n ͟Ψ  = −n 





∂c→

∂t
•˾  ͟(−c ͟ →•˾ )͟n ͟− ͟1 ͟Ψ + (−c→•˾ )͟n ͟



∂Ψ

∂t
 

     = −n 





∂c→

∂t
•˾  ͟(−c ͟ →•˾ )͟n ͟− ͟1 ͟Ψ + (−c→•˾ )͟n (͟ )−c→•˾ ͟Ψ  

     = −n 





∂c→

∂t
•˾  ͟(−c ͟ →•˾ )͟n ͟− ͟1 ͟Ψ + n{ }( )(c→•˾ ) ͟c→ •˾  ͟(−c ͟ →•˾  )͟n ͟− ͟1 ͟Ψ + (−c→•˾ )͟n ͟+ ͟1 ͟Ψ 

Again using equation (C.4), this indeed verifies the  n+1  case of equation (C.2) so that it is true for any value of  n. 

Consequently, the representation of equation (4) is mathematically possible. 
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