Appendix C to:
A Theoretical Investigation to the Physical Constraints for Light Velocity in Empty Euclidian Space and first Consequences for Long-distance Physics.

Referred equations: (4), (5)

Derivation of the basic equations for light velocity.

Starting point of these derivations is the equality:
(4) $\Psi(\vec{r}, t+\Delta t) \equiv \Psi(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \Delta \mathrm{t}, \mathrm{t})$

The $\mathrm{n}^{\text {th }}$ derivative to $\Delta \mathrm{t}$ is:
(C.1) $\quad \frac{\partial^{n} \Psi}{\partial \mathrm{t}^{\mathrm{n}}}(\overrightarrow{\mathrm{r}}, \mathrm{t}+\Delta \mathrm{t}) \equiv\left(-\overrightarrow{\mathrm{c}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \cdot \nabla_{\mathrm{L}}\right) \underline{\mathrm{n}} \Psi(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \Delta \mathrm{t}, \mathrm{t})$
where, as indicated, the operator ∇ operates on Ψ only and not on \vec{c}. In the limit for $\Delta \mathrm{t} \rightarrow 0$:
(C.2) $\quad \frac{\partial^{n} \Psi}{\partial t^{n}} \equiv(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}} \underline{\Psi}$
where both \vec{c} and Ψ are dependent on (\vec{r}, t). For reasons of readability, this is from here on no longer written explicitly. The second derivative to t also can be derived by differentiating the $\mathrm{n}=1$ case of equation (C.2) to t :
(C.3)

$$
\begin{aligned}
& \frac{\partial^{2} \Psi}{\partial \mathrm{t}^{2}}=\frac{\partial}{\partial \mathrm{t}}\left(\frac{\partial \Psi}{\partial \mathrm{t}}\right)=\frac{\partial}{\partial \mathrm{t}}(-\overrightarrow{\mathrm{c}} \cdot \nabla \underline{\Psi})=-\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla \underline{\Psi}-\overrightarrow{\mathrm{c}} \cdot \nabla\left(-\left(\frac{\partial \Psi}{\partial \mathrm{t}}\right)=-\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla \underline{\Psi}-\overrightarrow{\mathrm{c}} \cdot \nabla(-\overrightarrow{\mathrm{c}} \cdot \nabla \underline{\Psi})\right. \\
= & -\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla \underline{\Psi}+(\overrightarrow{\mathrm{c}} \cdot \nabla) \underline{\underline{c}} \cdot \nabla \underline{\underline{\Psi}}+(\overrightarrow{\mathrm{c}} \cdot \nabla)^{2} \underline{\Psi}
\end{aligned}
$$

Combination with the $\mathrm{n}=2$ case of equation (C.2) shows that:
(C.4) $\quad \frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}}=\left(\overrightarrow{\mathrm{c}} \cdot \nabla_{\mathrm{L}}\right) \underline{\overrightarrow{\mathrm{c}}}$
which is the top of equation (5). Similarly, for the third derivative:

$$
\begin{align*}
& \frac{\partial^{3} \Psi}{\partial \mathrm{t}^{3}}=\frac{\partial}{\partial \mathrm{t}}\left(\frac{\partial^{2} \Psi}{\partial \mathrm{t}^{2}}\right)=\frac{\partial}{\partial \mathrm{t}}\left((\overrightarrow{\mathrm{c}} \cdot \nabla)^{2} \Psi\right)=2\left(\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla\right)(\overrightarrow{\mathrm{c}} \cdot \nabla) \Psi+(\overrightarrow{\mathrm{c}} \cdot \nabla)^{2}\left(\frac{\partial \Psi}{\partial \mathrm{t}}\right)=2\left(\frac{\partial \mathrm{c}}{\partial \mathrm{t}} \cdot \nabla\right)(\overrightarrow{\mathrm{c}} \cdot \nabla) \Psi+(\overrightarrow{\mathrm{c}} \cdot \nabla)^{2}(-\overrightarrow{\mathrm{c}} \cdot \nabla \underline{\Psi}) \tag{C.5}\\
= & 2\left(\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla\right)(\overrightarrow{\mathrm{c}} \cdot \nabla) \Psi-(\overrightarrow{\mathrm{c}} \cdot \nabla)^{2} \cdot \overrightarrow{\mathrm{c}} \cdot \nabla \Psi-2\{((\overrightarrow{\mathrm{c}} \cdot \nabla) \overrightarrow{\mathrm{c}}) \cdot \nabla\}(\overrightarrow{\mathrm{c}} \cdot \nabla) \Psi-(\overrightarrow{\mathrm{c}} \cdot \nabla)^{3} \Psi
\end{align*}
$$

so that, according to equation (C.4):
(C.6) $\quad \frac{\partial^{3} \Psi}{\partial t^{3}}=-(\overrightarrow{\mathrm{c}} \cdot \nabla)^{2} \underline{\vec{c}} \cdot \underline{\nabla} \underline{\Psi}-(\overrightarrow{\mathrm{c}} \cdot \nabla)^{3} \underline{\Psi}$

Combination with the $\mathrm{n}=3$ case of equation (C.2) shows that:
(C.7) $\quad(\vec{c} \cdot \nabla)_{-}^{2} \vec{c}=0$
which is the bottom of equation (5).
It still has to be shown, that the different ways of deriving $\partial^{n} \Psi / \partial t^{n}$ are equivalent also for $n>3$. Assuming that to be true up to and including a given value of n, we derive for the $n+1$ case, keeping in mind equation (C.7):

$$
\begin{align*}
\frac{\partial^{n+1} \Psi}{\partial \mathrm{t}^{\mathrm{n}+1}}= & \frac{\partial}{\partial \mathrm{t}}\left(\frac{\partial^{\mathrm{n}} \Psi}{\partial \mathrm{t}^{\mathrm{n}}}\right)=\frac{\partial}{\partial \mathrm{t}}\left((-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}} \underline{\Psi}\right)=-\mathrm{n}\left(\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla\right)(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}-1} \Psi+(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}}\left(\frac{\partial \Psi}{\partial \mathrm{t}}\right) \tag{C.8}\\
& =-\mathrm{n}\left(\frac{\partial \mathrm{c}}{\partial \mathrm{t}} \cdot \nabla\right)(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}-1} \Psi+(-\overrightarrow{\mathrm{c}} \cdot \nabla)_{L}^{\mathrm{n}}(-\overrightarrow{\mathrm{c}} \cdot \nabla \underline{\Psi}) \\
& =-\mathrm{n}\left(\frac{\partial \overrightarrow{\mathrm{c}}}{\partial \mathrm{t}} \cdot \nabla\right)(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}-1} \Psi+\mathrm{n}\{((\overrightarrow{\mathrm{c}} \cdot \nabla) \overrightarrow{\mathrm{c}}) \cdot \nabla\}(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}-1} \Psi+(-\overrightarrow{\mathrm{c}} \cdot \nabla)^{\mathrm{n}+1} \Psi
\end{align*}
$$

Again using equation (C.4), this indeed verifies the $n+1$ case of equation (C.2) so that it is true for any value of n. Consequently, the representation of equation (4) is mathematically possible.

